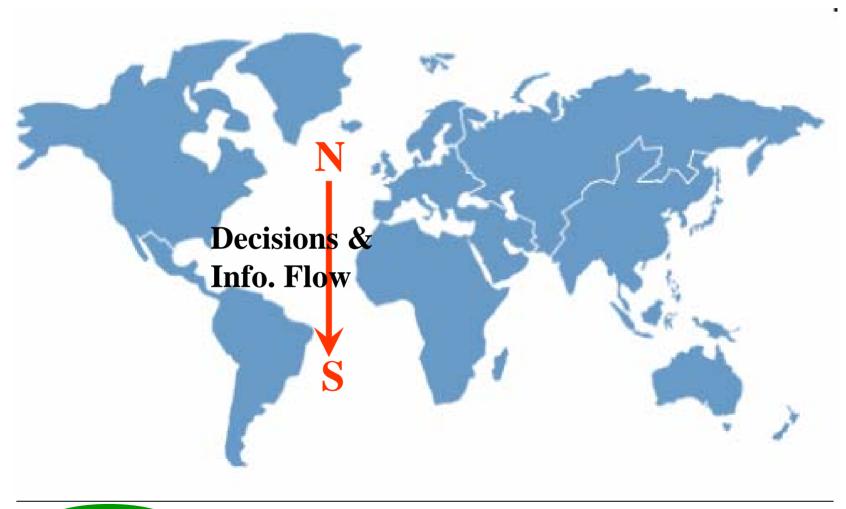
Integrating Water, Sustainable Development and Climate Change: Applying the Sustainable Water Resources Management (SWARM) Framework

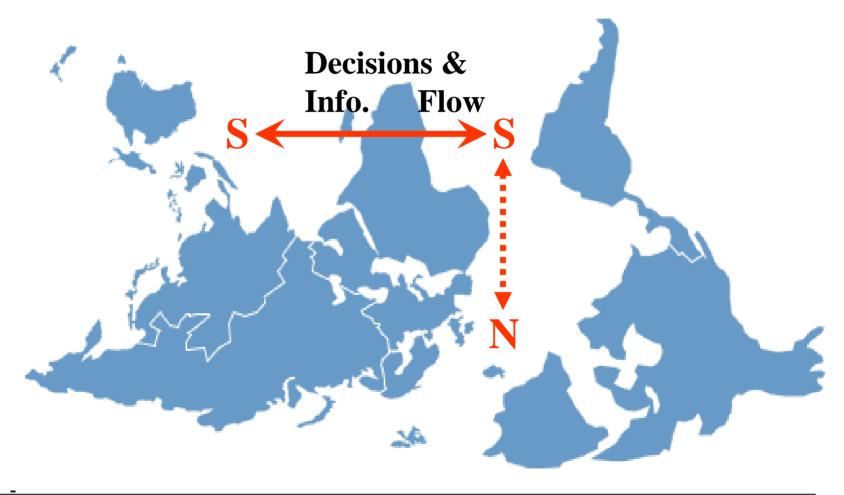
Professor Mohan Munasinghe

Chairman, Munasinghe Institute for Development (MIND), Colombo Director-General, Sustainable Consumption Inst., Univ. of Manchester Hon. Senior Advisor to the Government of Sri Lanka, Colombo Co-Laureate, 2007 Nobel Peace Prize (Vice Chair, IPCC-AR4)

Keynote Paper presented at the American Society of Civil Engineers International Conference on Environmental and Water Resources AIT, Bangkok, 6 January 2009


WHAT? are the challenges water, sustainable development and climate change issues are complex and closely interlinked

WHAT? are the challenges water, sustainable development and climate change issues are complex and closely interlinked


HOW?

can we seize the opportunities
by making development more sustainable
and exploiting synergies using the
sustainomics framework for sustainable
water resources management (SWARM)

Traditional North-oriented Worldview - More Technoeconomic-Financial Focus

Emerging South-oriented Worldview - More Balanced: Poverty & SD Focus

World of Water - Distribution and Availability

Total water on Earth (100%: ~13.5 million km³)

2.5% fresh water

97.5% salt water

2/3 glaciers and ice caps

1/3 or 110,300 km³ useable

2/3 lost to evapotranspiration, etc

1/3 or 40,700 km³ potentially accessible to humans

Total water available sustainably in 2000 (~12,500 km³ < 1% of Total)

40,700 km³

80% or 32,900 km³ accessible

20% too remote

3/4 floods

1/4 available sustainably

8,200

→ Dams, etc. +4,300

12,500 km³ available sustainably (<0.1% of total water on the planet)

The Emerging World of Sustainable Water Resources Management (SWARM) - Challenges and Opportunities

- Meet growing water needs for development
- Maintain cost effectiveness and financial viability
- Ensure secure and diverse water supply
- Provide affordable and reliable water services
- Protect the environment and the planet
- Balance competing uses of water
- Address governance/privatisation issues

Costs of Water Supply are rising rapidly due to:

- Water scarcity
- Mismanagement
- Increasing distance of water sources from users

Water resources availability (examples)

	Total Water Resources	
	(Cu. M per capita per year)	
Sri Lanka	2,634	
India	1,913	
Pakistan	1,892	
Saudi Arabia	119	
Brazil	32,256	

Water sector problems worsen sharply below 2500 cu.m/capita/yr. And water stress ensues at ~2000 cu.m/cap/yr.

Relative water withdrawals (2005): Competition among sectors/users

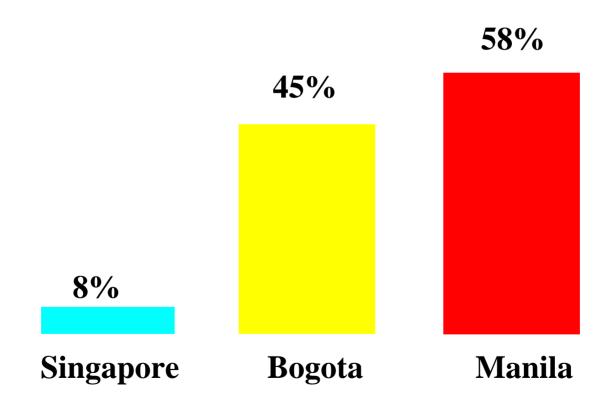
	Water Use as share of total use (%)			
	Domestic	Agriculture	Industry	
Sri Lanka	2	96	2	
Low Income	4	91	5	
Middle Income	13	69	18	
High Income	14	39	47	
World	8	69	23	

Example: water extraction and bottling causing increasing problems for access to water of the poor

Assessing Water Services (2000)

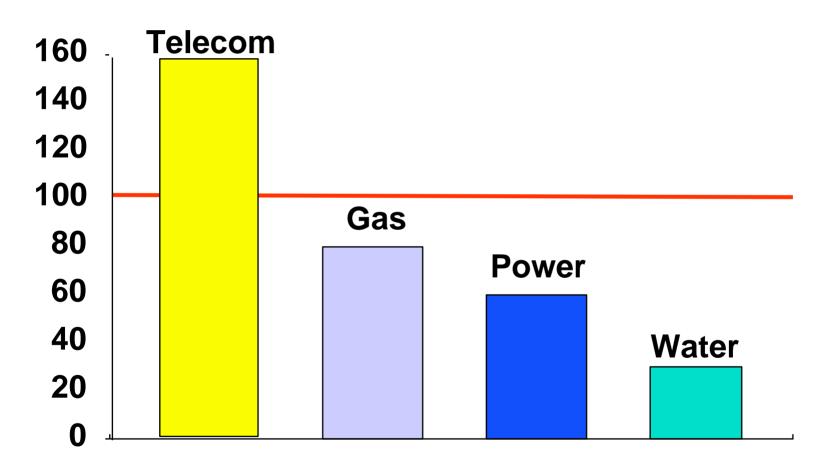
The Glass Half Full?

- 1.6 billion more people have access to water supply
- 1 billion more people have access to sanitation


OR

The Glass Half Empty?

- 1 billion people have NO access to adequate water supply
- 1.7 billion people have IN-adequate sanitation facilities



Mismanagement: Inefficient Supply Utilities and "Unaccounted-for-Water"

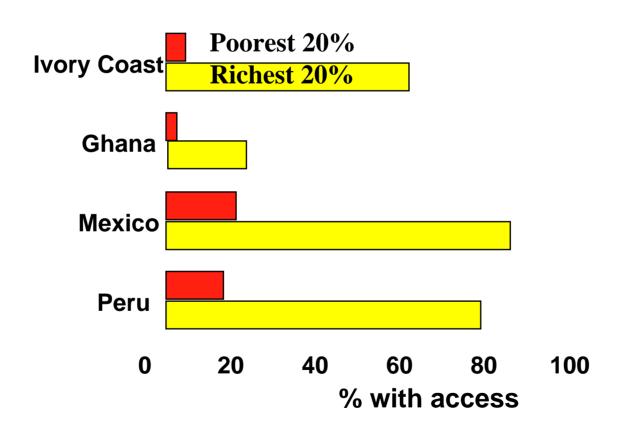
Poor cost recovery in water and sanitation sector constrains investment

Major resource savings possible if water services were made more

- Accountable
 - Efficient
 - Responsive

Innovative approaches to cost recovery - Grameen Bank

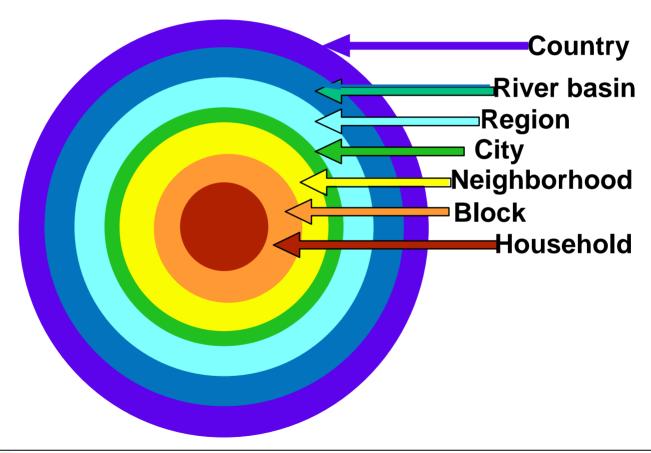
- Rural water supply promoted in Bangladesh
- Making non-subsidized credit available to poor women
- > \$15 million a year for tubewells
- 98% repayment



Innovative approaches to cost recovery - Chile's 'Water Stamps'

- Importance of financially viable utilities
- Cross-subsidies reduces utilities' incentives to serve poor
- Government-financed 'water stamps' for locally-identified poor
- Separation of welfare and commercial roles

Equity: when services are rationed, the poor get rationed out


High Private Water Price Paid by Poor with no Access to Public Water Sources (Ratio)

Location	Price ratio (private to public)
Cairo	40:1
Tunis	10:1
Abidjan	5:1
Nairobi	11:1
Lagos	11:1
Nouakchot	100:1
Dacca	25:1
Karachi	83:1
Jakarta	60:1
Cali	10:1
Guayaquil	20:1
Lima	17:1
Port-au-Prince	100:1

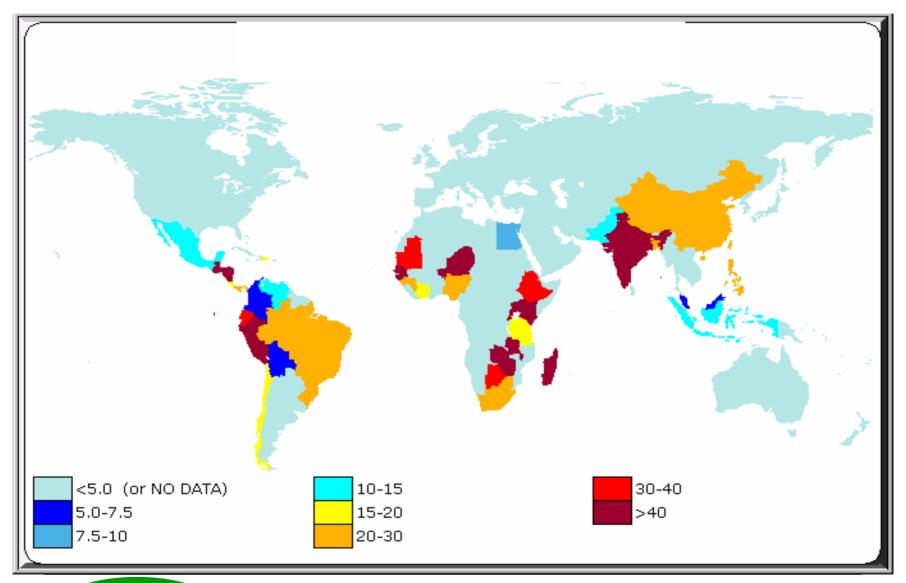
Source: Webb and Iskandarani (1998)

Equity: Who should pay for services at different levels?

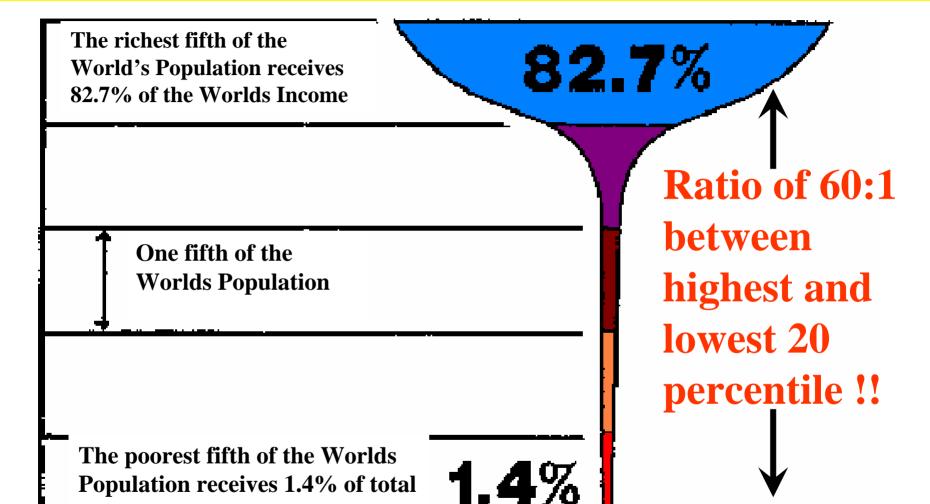
Applying Public Finance Principles Example: Sewerage Services

- Households pay cost for on-lot services
- Blocks (group of households) pay for tertiary sewers
- Neighborhoods (groups of blocks) pay for secondary sewers
- City (groups of neighborhoods) pays for trunk sewers

Water, Sustainable Development and Climate Change


Water is essential for Sustainable Development, especially in Developing Countries

Sustainable Development Challenges include:


- alleviate poverty for the 1.3 billion people who live on less than \$1 per day and the 3 billion people who live on less than \$2 per day
- provide adequate **food**, especially for the 800 million people who are malnourished today—this will require food production to double in the next 35 years without further environmental degradation, e.g., deforestation
- provide **clean water** for the 1.3 billion people who live without clean water and provide sanitation for the 2 billion people who live without sanitation
- provide **energy** for the 2 billion people who live without electricity
- provide a **healthy environment** for the 1.4 billion people who are exposed to dangerous levels of *outdoor pollution* and the even larger number exposed to dangerous levels of *indoor air pollution and vector-borne diseases*
- provide **safe shelter** for those that live in areas susceptible to civil strife due to environmental degradation and those vulnerable to natural disasters

Poor living on < \$1 per day - in Developing Countries

World Income Distribution 2000: Champagne Glass

World Income

Major agreements on SD - Poverty Focus

1. UNCED 1992: Rio Earth Summit

- Rio Declaration of Principles
- Agenda 21
- UNFCCC
- 2. Millennium Development Goals 2000: UN
- 3. WSSD Goals 2002: Johannesburg Summit
- 4. Millennium Development Summit 2006: UN

Millennium Development Goals (MDG)

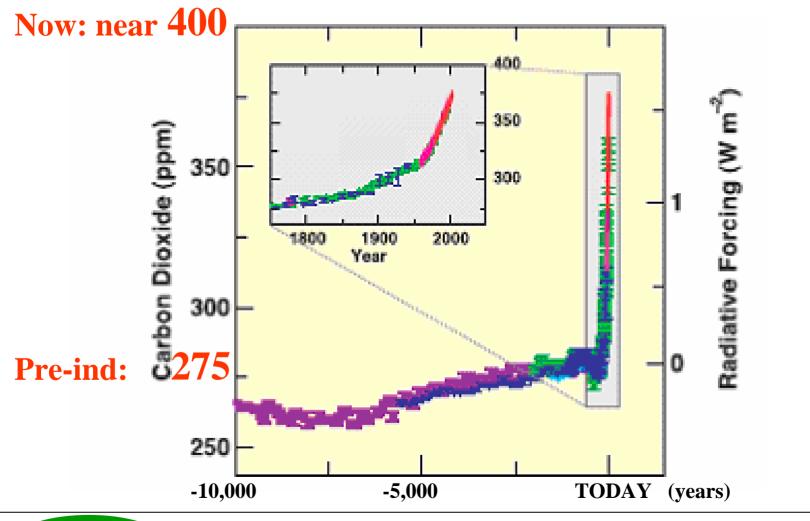
United Nations Millennium Declaration, 2000

- Eradicate extreme poverty and hunger
- Achieve universal primary education
- Promote gender equality and empowerment
- Reduce child mortality
- Improve maternal health
- Combat HIV/AIDS, malaria and other diseases
- Ensure environmental sustainability
- Develop a global partnership for development

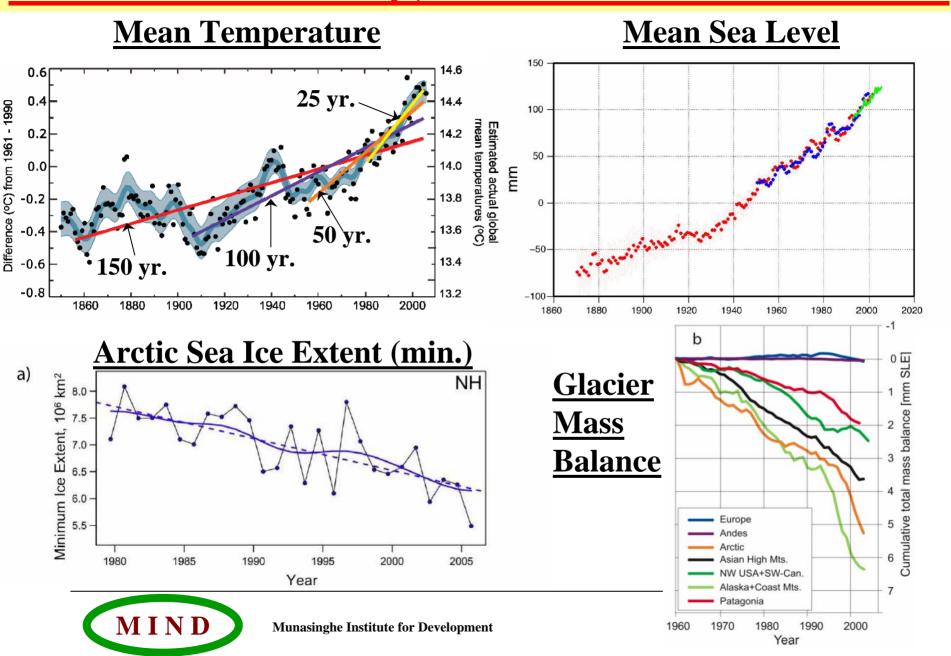
Water is an implicit goal

Commendable targets, but will they be met?

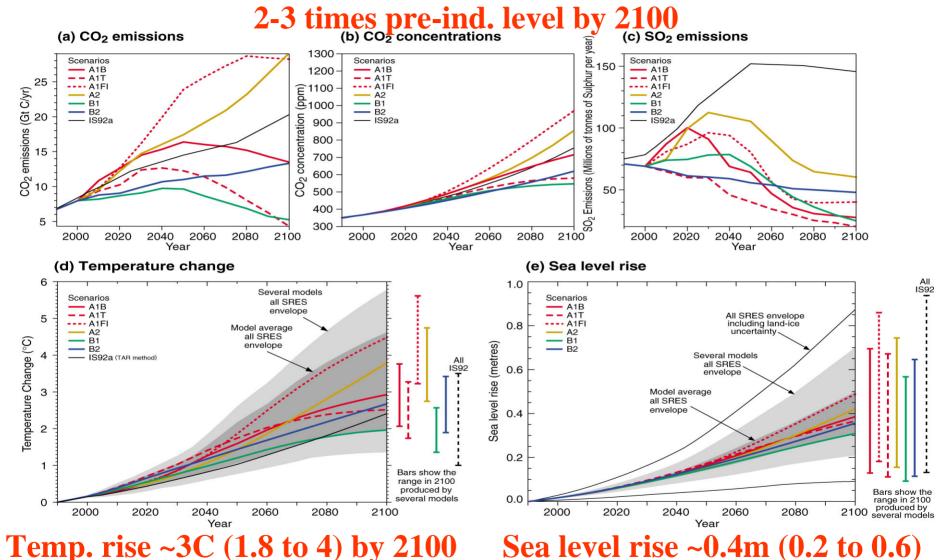
Global Environment Climate Change Brief Overview of IPCC AR4: Risk to Sustainable Development


IPCC AR4 – Summary of Main Findings

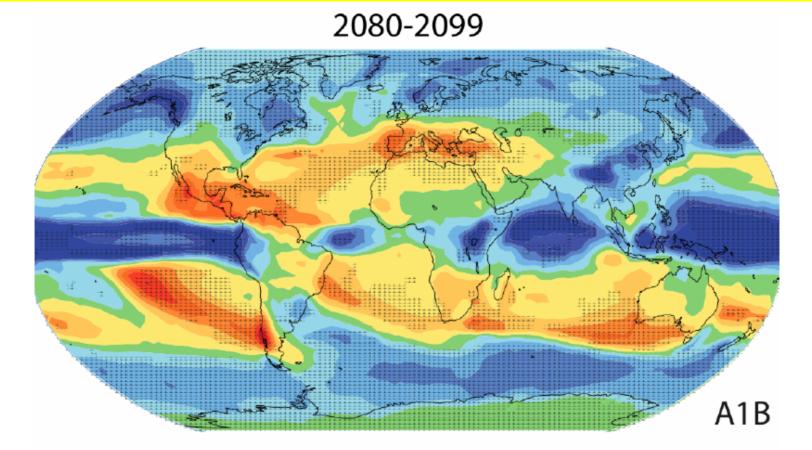
- Global warming in unequivocal. Total radiative forcing of the climate now is unprecedented in several thousand years, due to rising concentrations of GHG (CO2, CH4 & NO2).
- Humans activities since the 18th century are very likely to have caused net warming of Earth's climate, dominating over the last 50 years. More temp. and sea level rise is inevitable, even with existing GHG concentrations.
- Long term unmitigated climate change would likely exceed the capacity to adapt, of natural managed and human systems.
- Poor countries and poorest groups will be most vulnerable to warming, sea level rise, precipitation changes and extreme events. Most socioeconomic sectors, ecological systems and human health will suffer.
- Adaptation measures are available, but must be systematically developed
- Mitigation technologies are also available, but better policies and measures (PAM) are needed to realize their potential.
- Making development more sustainable (MDMS) by integrating climate change policy into sustainable development strategy is the most effective solution.


MAIN DRIVER

Changes in CO2 from ice core and modern data

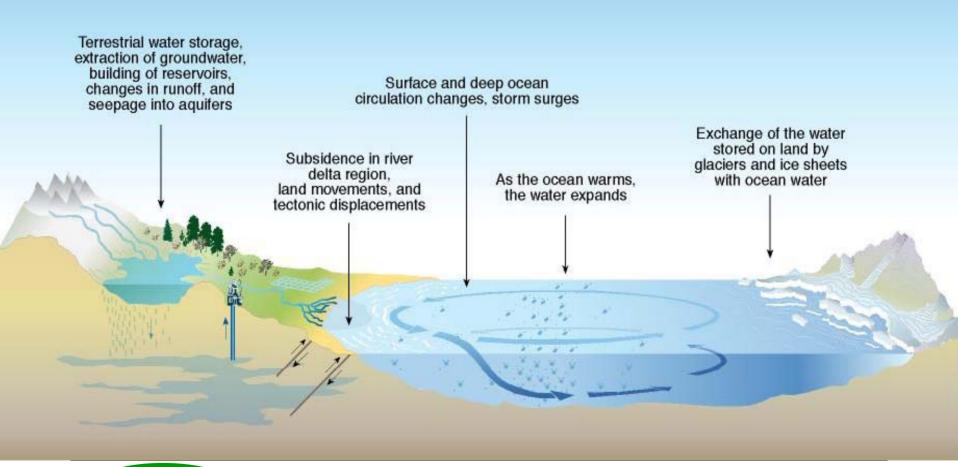


RESULT: Mean temp, sea level and arctic ice cover


The Global Climate of the 21st Century

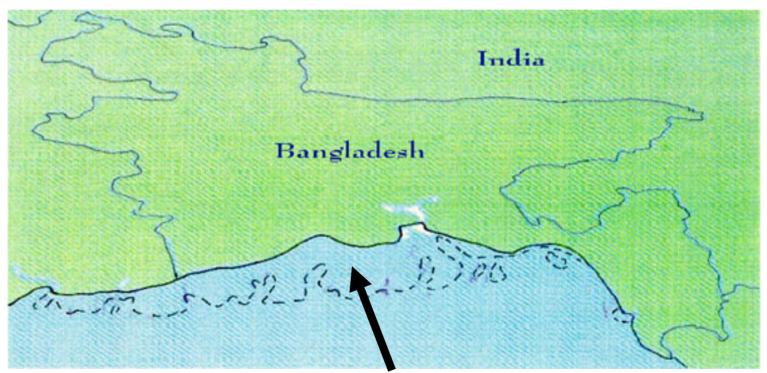
Sea level rise ~0.4m (0.2 to 0.6)

Dry areas will get dryer & wet areas will get wetter

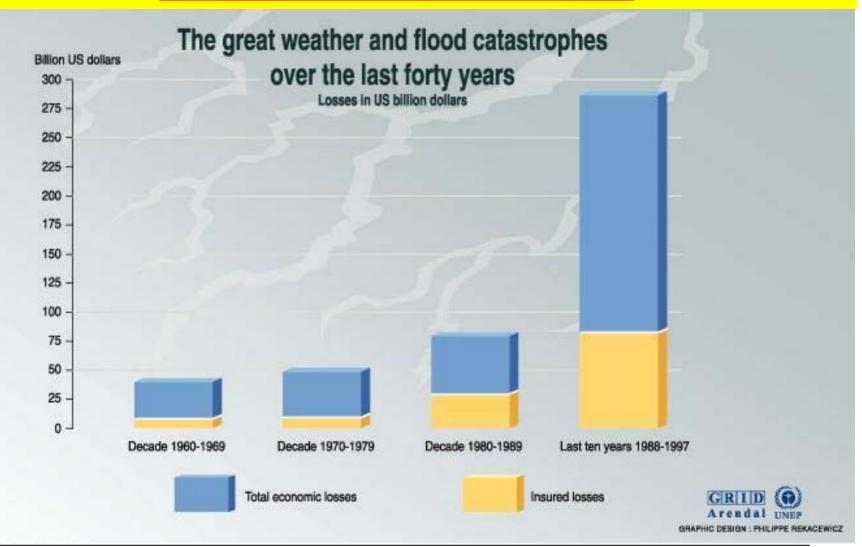


-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 Annual Mean Precipitation Change (mm/day)

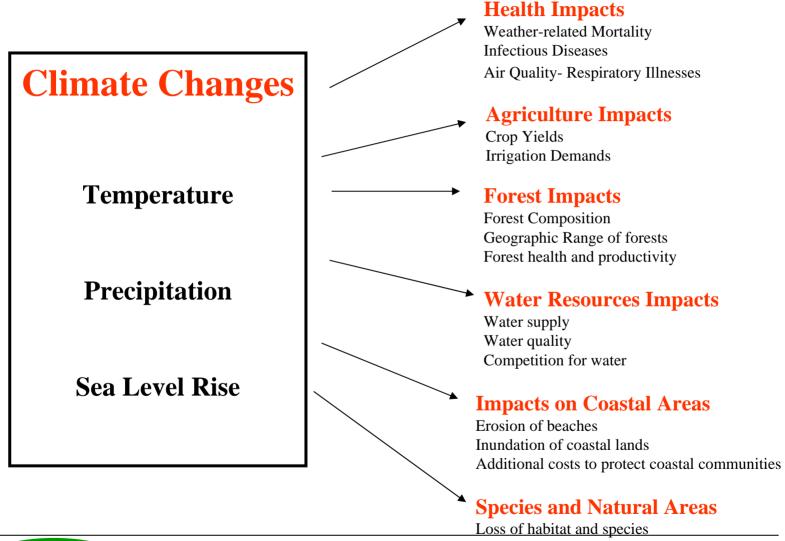
SEA LEVEL RISE will be caused by thermal expansion of the oceans and melting of land ice and ice sheets


What causes the sea level to change?

MEAN SEA LEVEL RISE of 0.4 m (range: 0.2 to 0.6) is projected by 2100 but with significant regional variations


Increased risk of floods, potentially displacing tens of millions of people, due to sea level rise and heavy rainfall events, especially in Small Island States and low-lying deltaic areas.

Bangladesh is projected to lose about 17% of its land area with a sea level rise of one meter - very difficult to adapt due to lack of adaptive capacity



Flooded area

Extreme Weather Events - Worsening Trend Economic Damage Increasing

OVERALL: More adverse than beneficial impacts on biological and socioeconomic systems

Key IPCC Findings – A Few Beneficial Impacts

increased agricultural productivity in some mid-latitude regions (only for warming of up to a few degrees C)

increased water availability in some water-scarce regions

reduced winter mortality in mid- and high-latitudes

increase in timber supply (with well managed forests)

Potential Large Scale Impacts - Uncertain

Greenhouse gas emissions in the 21st century might set in motion large-scale, high-impact, non-linear, and potentially irreversible changes in physical and biological systems over the coming decades to millennia

- **Melting of ice sheets** (sustained warming of a few °C over millennia is projected to lead to an increase in sea level of several meters due to loss of Greenland and Antarctic Ice)
- Thermohaline circulation
- Species extinction and biodiversity loss
- Catastrophic climate-development interactions

UN Framework Convention on Climate Change 1992

Article 2

- Stabilize atmospheric GHG concentrations to prevent 'dangerous' anthropogenic inteference in the climate system:
- enable economic development to proceed in a sustainable manner
- ensure food production is not threatened
- allow ecosystems to adapt naturally

UNFCCC also speaks of "common but differentiated responsibilities"

Adaptation Burden & Equity: CC -> SD

Adaptation is first priority of developing countries that are most vulnerable to climate change

- Climate change is likely to impact disproportionately upon the poorest countries and the poorest persons within all countries, exacerbating inequities in health status and access to adequate food, clean water and other resources.
- Net economic effects will be negative in most developing countries
- Impacts will be worse many areas are already flood and drought prone, and economic sectors are climate sensitive
- Lower capacity to adapt because of a lack of financial, institutional and technological capacity, and access to knowledge

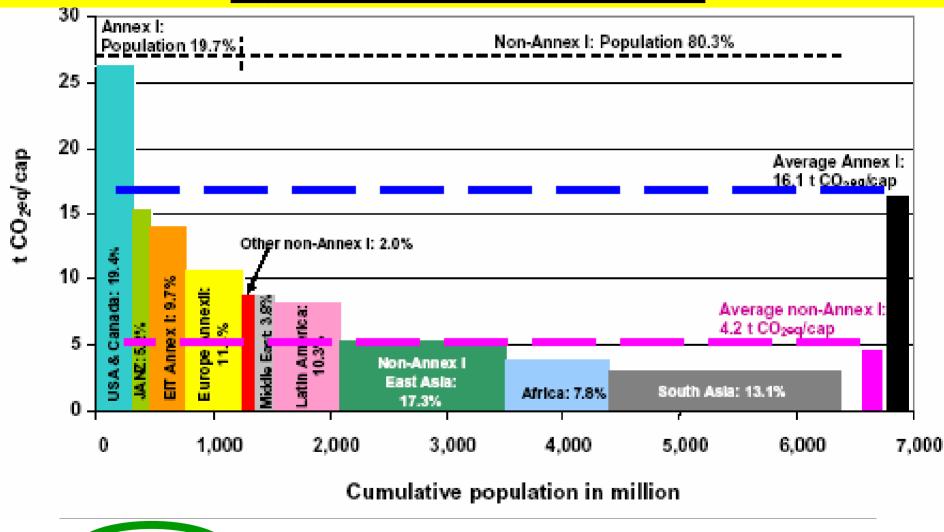
Most Vulnerable People

Children

Elderly

Poor

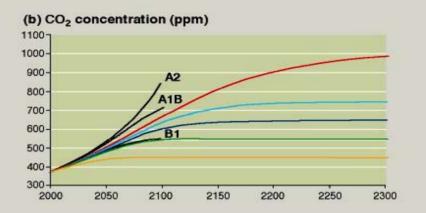
Most Vulnerable Regions

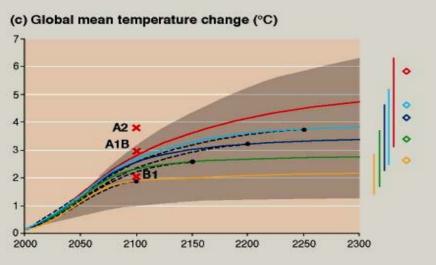

Most Vulnerable Systems and Sectors

- Some ecosystems:
 - Coral reefs; sea-ice regions
 - Tundra, boreal forests, mountain and Mediterranean regions
- Low-lying coasts, mangroves & salt marshes
- Water resources in mid-latitudes & dry Tropics
- Low-latitude agriculture
- Human health where adaptive capacity is low

Mitigation Responsibility & Equity: SD --> CC

Mitigation is main responsibility of industrial countries with high per capita GHG emissions




MIND

Stabilization of the atmospheric concentration of carbon dioxide will require significant emissions reductions

Emissions, concentrations, and temperature changes corresponding to different stabilization targets for CO₂ concentrations

Pre-industrial norm = 275 ppmv

The Challenge of Mitigation

The near-term Challenge is to achieve the Kyoto targets. Process continues with meeting of parties (MOP) – separate from conference of parties (COP)

The longer-term challenge is to meet the objectives of Article 2 of the UNFCCC, i.e., stabilization of atmospheric concentrations of GHG concentrations at a level that does not harm the climate system (food security, ecological systems and sustainable economic development).

Process starts with post-Kyoto (beyond 2012) - second round of commitments, discussions began in 2008.

Copenhagen 2009 is a historic opportunity.

Mitigation: Kyoto Protocol (1997) in force in 2005 (without US)

1. Annex 1 Countries undertake mitigation -- GHG emission reductions (2008-2112) relative to 1990:

EU	- 8 %
USA	- 7 %
Japan	- 6 %
Australia	+8%
Russian Federation	0 %
all developed countries	- 5 %

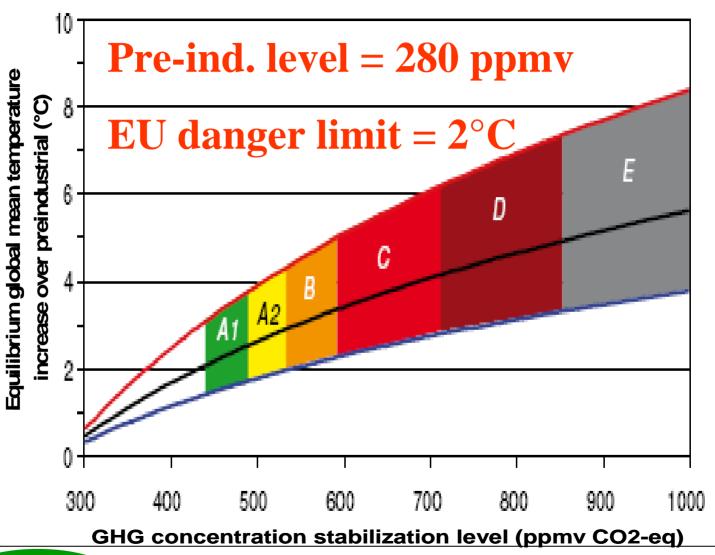
- 2. No obligations for developing countries and economies in transition
- 3. Kyoto Mechanisms: CDM, JI, emissions trading

Disturbing Near Term Trends in GHG Emissions: 1970-2030

During 1970-2004 (Actual)

GHG emissions covered by the Kyoto Protocol have increased by about 70%.

CO2 (77% of GHG), has grown by about 80%.


Even after Kyoto 1997, emissions have continued to increase

During 2000-2030 (projected)

GHG emission will rise 45-110% with current policies. Two thirds of this growth will be in developing countries, but per capita emissions in developed countries will remain 3-4 times higher.

Stabilisation levels and equilibrium global mean temperatures

Concentrations, mean temp. rise & peak year emissions

The lower the stabilization level, the more quickly emissions would need to peak and to decline thereafter. EU danger limit = 2° C

Mitigation efforts over the next two to three decades will have a large impact on opportunities to achieve lower stabilization levels.

CO ₂ stabili- zation	CO2- Equivalent Stabili- zation level	Year CO2 needs to peak	GDP reducti on in 2030	Reduction in 2050 relative to 2000	Global Mean temp. incr. at equilib.	Global average sea level rise from thermal expansion
ppm	ppm	Year	%	Percent	°C	metres
350 – 400	445 – 490	2000 – 2015	< 3	-85 to -50	2.0 - 2.4	0.4 - 1.4
400 – 440	490 – 535	2000 – 2020	< 2	-60 to -30	2.4 - 2.8	0.5 - 1.7
440 – 485	535 – 590	2010 – 2030	0.6	-30 to +5	2.8 - 3.2	0.6 - 1.9
485 – 570	590 – 710	2020 – 2060	0.2	+10 to +60	3.2 - 4.0	0.6 - 2.4
570 – 660	710 – 855	2050 – 2080		+25 to +85	4.0 – 4.9	0.8 - 2.9
660 – 790	855 – 1130	2060 – 2090		+90 to +140	4.9 – 6.1	1.0 - 3.7

GHG Mitigation Costs: 2030 and 2050

1. GDP reduction costs

Stabilisation levels (ppm CO ₂ -eq)	Median G reduction	3.3	Range of GDP reduction ^(b) (%)		Reduction of average annual GDP growth rates (percentage points) (c), (e)	
	2030	2050	2030	2050	2030	2050
445 – 535 ^(d)	Not available		< 3	< 5.5	< 0.12	< 0.12
535 – 590	0.6	1.3	0.2 to 2.5	slightly negative to 4	< 0.1	< 0.1
590 – 710	0.2	0.5	-0.6 to 1.2	-1 to 2	< 0.06	< 0.05

2. Costs per tonne of CO₂equivalent mitigated

To achieve a 2100 target of 550 ppmv, the costs in 2030 will be US\$ 20-80 per tonne mitigated. These costs could fall further to US\$ 5-65 with induced technological advanced.

Global Long Term Perspectives

- Lessons of History
- Future Scenarios

Sustainability & Resource Use: Historical view

DURABLE USE OF RESOURCES

- Nile Basin (Egypt)
 - Pharaonic system lasted over 4000 years, with sustainable resource use and reasonable quality of life
- Yellow River Basin (China)
 Imperial system was stable for many millenia, and supported flourishing society
- Saraswati River (India)

Hosted a flourishing civilisation for 4000 years. River eventually dried up due to tectonic activity, climate change and desertification, and water piracy.

OVEREXPLOITATION OF RESOURCES

Sahara Desert

Once green with many animals and hunters. Over-exploitation led to a drier habitat which could no longer sustain these populations

Major Current Global Issues (handled piecemeal)

Poverty, inequity and human well-being

billions living on <1 per day without basic needs, unequal income distribution

Scarce resources, conflict and competition

energy, water, land, food, etc.

Environmental damage

degradation of air, land and water, climate change, etc.

Globalisation

high risks (e.g., financial crises), but benefits if well-managed

Governance

mis-management, corruption, govt. business and civil society partnership crucial

Private-public balance

Excessive government control and unrestrained markets are both risky extremes

Uncoordinated responses complicate matters Example: 2007-2008 food scarcity

Human actions

- Oil crisis → Corn ethanol
- Drought → Grain shortage

Nature

Food Scarcity

Financial Markets

Bubbles

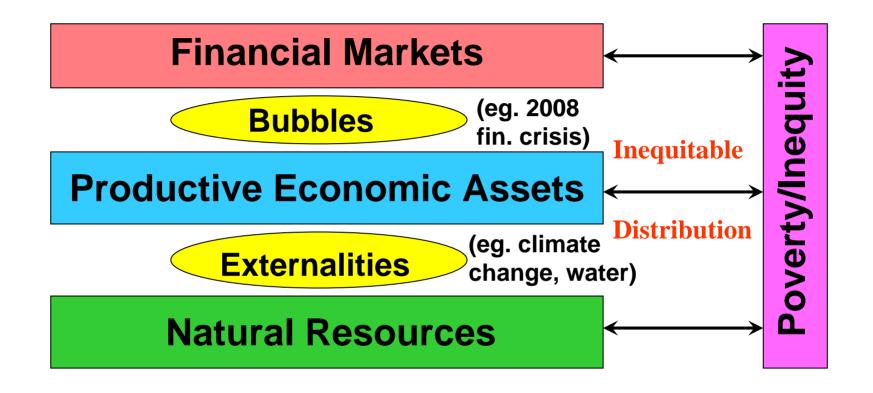
(eg. 2008 fin. crisis)

Productive Economic Assets

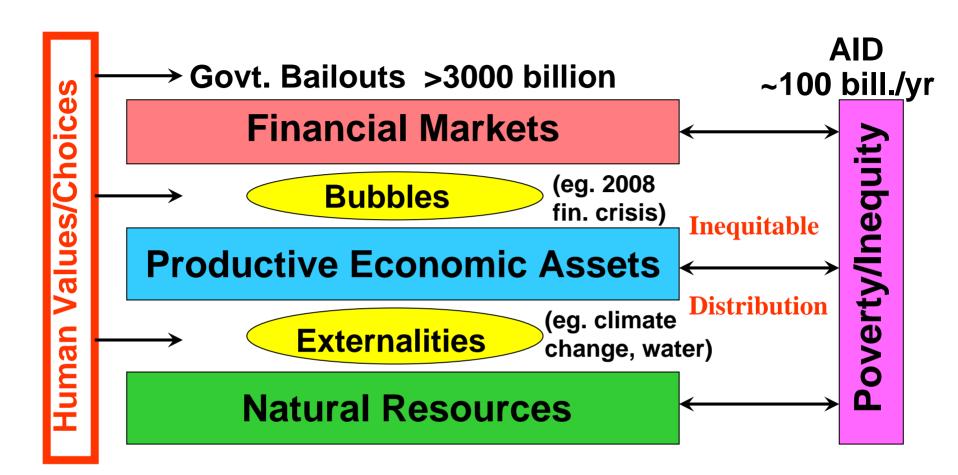
Financial Markets

Bubbles

(eg. 2008 fin. crisis)


Productive Economic Assets

Externalities


(eg. climate change, water)

Natural Resources

Some Long Term Global Scenarios

MAIN SCENARIOS

VARIANTS

1. Barbarization Breakdown

Fortress World

2. Conventional Market Driven

Policy Reform

3. Transition New Sustainability

Eco-Communalism

Likely Actual Future Mix of above scenarios

(BAU)

Source: Adapted from Global Scenario Group (2000)

Barbarization

Unrestrained market forces increase risk of conflict (erosion of ethical & moral underpinnings of civilization)

Poverty, Inequity
Resource scarcity (water, energy, etc.)
Social polarization, Conflict, Terrorism
Environmental harm, Climate change

Chaos, Break-down

Conflict, rivalry and competition for resources overwhelm all efforts to impose order

Fortress World

Local, regional and international groups respond selfishly to protect their interests

A Long Term Vision of Sustainable Development: 1

Levels

Indicators

Time

Human Interventions

Main Issues Poverty, Inequity, Exclusion,

Resource Conflicts, Harm to

Environment (including CC)

High risk from unrestrained, myopic market forces ("Washington consensus", globalisation etc.) –

Reactive: piecemeal - mainly govt.

A Long Term Vision of Sustainable Development: 2

Levels	<u>Indicators</u>	Time	Human Interventions
Main Issues	Poverty, Inequity, Exclusion, Resource Conflicts, Harm to Environment (including CC)	Now	High risk from unrestrained, myopic market forces ("Washington consensus", globalisation etc.) – Reactive: piecemeal - mainly govt.
Immediate Drivers	Consumption Patterns Population Technology Governance	sition	Making development more sustainable (MDMS) with systematic policy reform to manage market forces (Sustainomics) – Proactive: integrated, harmonious approach - govt., business, civil soc.

A Long Term Vision of Sustainable Development: 3

Now

Transition

<u>Levels</u>	<u>Indicators</u>	<u>Time</u>	Human Interventions
---------------	-------------------	-------------	----------------------------

Poverty, Inequity, Exclusion, Main

Resource Conflicts, Harm to

Environment (including CC)

High risk from unrestrained, myopic market forces ("Washington consensus", globalisation etc.) – Reactive: piecemeal - mainly govt.

Consumption Patterns Immediate Population

Technology

Governance

Making development more sustainable (MDMS) with systematic policy reform to manage market forces (Sustainomics) – **Proactive: integrated, harmonious** approach - govt., business, civil soc.

Pressures

Issues

Drivers

Basic Needs Long Term Underlying Social Power Structure

Values, Perceptions, Choices

Knowledge Base

Fundamental global sustainable dev. transition catalysed through grass roots citizens movements, driven by social justice and equity, innovative leadership, policies, info. flows, tech. (new SD paradigm) -**Proactive: civil soc., business, govt.**

Source: Munasinghe (2007), IPCC, MA, GTI

HOW?

can we seize the opportunities
by making development more sustainable
and exploiting synergies using the
sustainomics framework for sustainable
water resources management (SWARM)

Sustainable Water Resources Management (SWARM)

Integrating Water (and Environmental) Policies within Overall Sustainable Development Strategy using the Sustainomics Framework

SUSTAINOMICS Core Concepts

Basis for Integrating Water (and Environmental) Policies into Sustainable Development Strategy

Core concepts and elements

- 1. Making development more sustainable (MDMS)
- 2. Sustainable development triangle
- 3. Transcending boundaries
- 4. Full cycle application of integrative tools from data gathering to practical policy implementation

<u>Understanding Sustainable Development – some (ideal) generic definitions</u>

"development that meets the needs of the present without compromising the ability of future generations to meet their own needs"

Source: Bruntland et al. (1987)

"process for improving the range of opportunities that will enable individual human beings and communities to achieve their aspirations and full potential over a sustained period of time, while maintaining the resilience of economic, social and environmental systems"

Source: Munasinghe (1992, Rio Earth Summit)

Rationale for practical approach based on Making Development More Sustainable (MDMS)

The precise definition of sustainable development remains an elusive (perhaps unreachable) goal.

Parallel track strategy:

- 1. Long term aim for goal of sustainable development.
- 2. Short to medium term make development more sustainable.

Making development more sustainable (MDMS) is a less ambitious strategy that is more practical to implement because many unsustainable activities are easier to recognize and eliminate. Method is incremental (or gradient-based).

Furthermore, water decisionmakers cannot be expected to address all the problems of sustainable development.

PRACTICAL TEST TO EMBED WATER OPTIONS IN SD:

Does it make development more (or less) sustainable?

Sustainable Development Peak including climate change (covered by clouds)

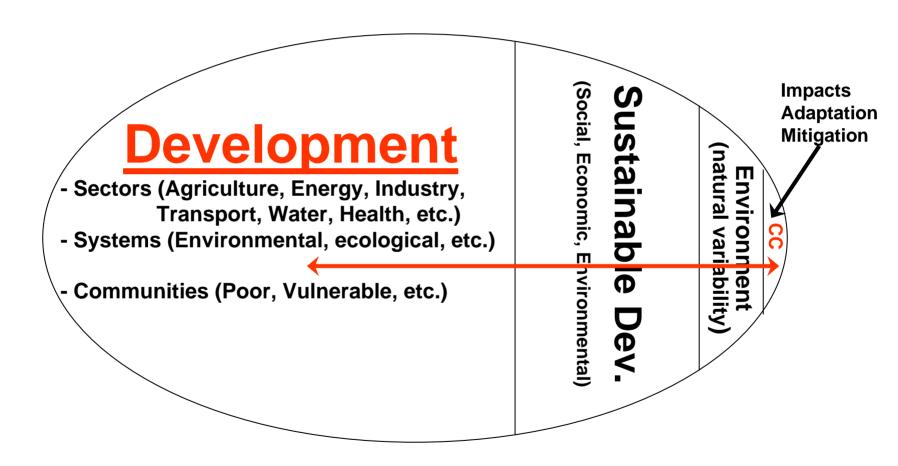
Lets move forward NOW!! If we start climbing uphill, we will reach the peak eventually

Debating Sustainable Development and CC

We cannot see the peak!! Let's first stop, discuss & debate how to reach it.

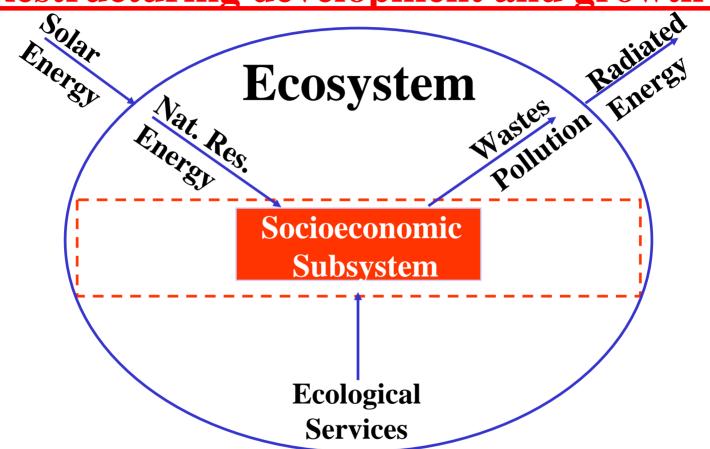
Many obviously unsustainable practices exist today. MDMS encourages us to eliminate them NOW! Examples include water pollution, wastage and deforestation.

Making Development More Sustainable: Personal Lifestyle Changes



MDMS: Corporate Social Responsibility

- Corporate Social Responsibility (CSR) is a concept whereby organizations consider the interests of society by taking responsibility for the impact of their activities on customers, suppliers, employees, shareholders, communities and the environment in all aspects of their operations.
- This obligation is seen to extend beyond the statutory and conventional obligation to comply with legislation and seek profits. It sees organizations voluntarily taking further steps to improve the quality of life for employees and their families as well as for the local community and society at large.


MDMS: National Level CC-SD Integration

Make decision makers see sustainability as a key element of the national development strategy

MDMS Global Level

Restructuring development and growth I

The capacity of the ecosystem may become overloaded by the growing socio-economic subsystem (broken lines).

MDMS Global Level

Restructuring development and growth II (rounding the rectangle)

Ecosystem

Socioeconomic Subsystem

Unsustainable

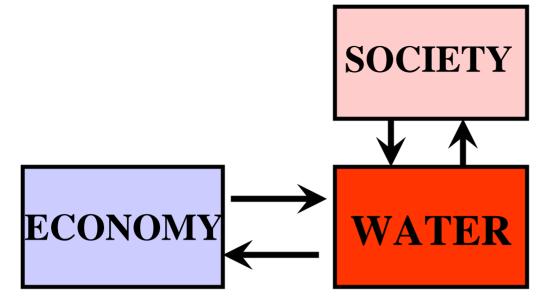
Ecosystem

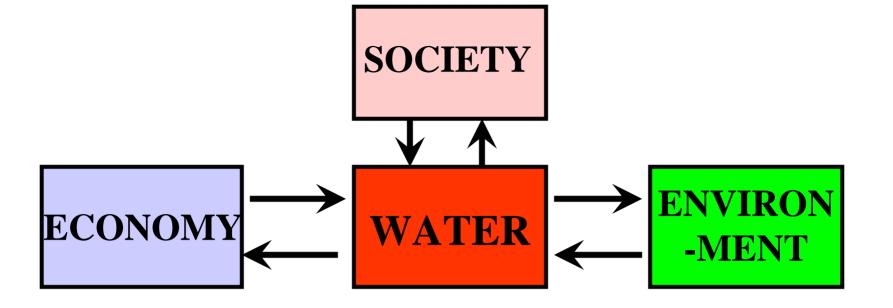
Socioeconomic Subsystem

Sustainable

Core concepts and elements

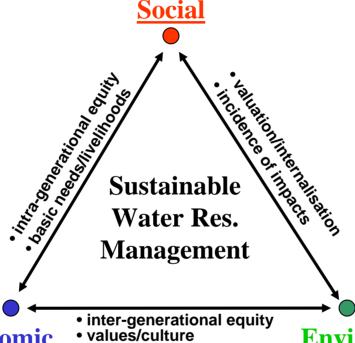
- 1. Making development more sustainable (MDMS)
- 2. Sustainable development triangle
- 3. Transcending boundaries
- 4. Full cycle application of integrative tools from data gathering to practical policy implementation


Supply technology-oriented, hydrology, hydro-dynamics, technical efficiency, etc.



Supply-demand balance, price and income elasticity of demand, cost-benefit analysis, least cost investment planning, demand management, long run marginal cost pricing, etc.

Poverty, equity, basic water needs, affordability, social assessment, etc.



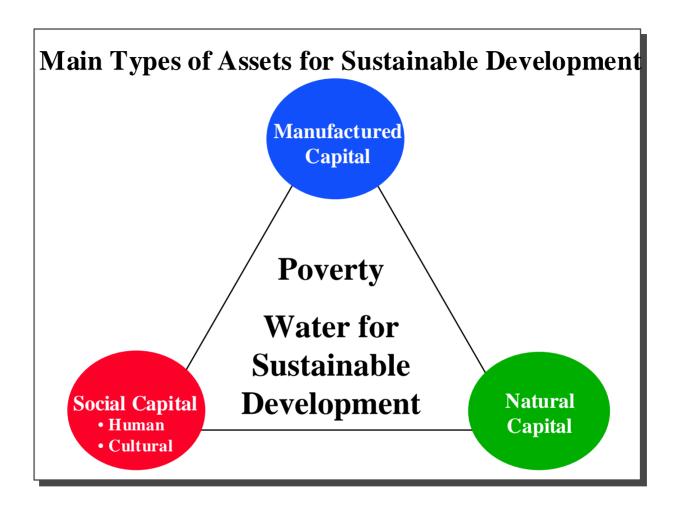
Environmental assessment and valuation, extended CBA, multi-criteria analysis, integrated national water planning and pricing, multi-sector macro-models, etc.

SWARM framework: economy, environ., society

- access/empowerment
- inclusion/consultation
- institutions/governance

- **Economic**
- growth
- efficiency
- stability

Environmental


- resilience/biodiversity
- natural resources
- pollution

Sustainable Development Triangle - key elements and interconnections

(corners, sides and centre)

Source: Munasinghe [1992], Rio Earth Summit

Source: Munasinghe (1992), Rio Earth Summit

Social Capital: Ignored, Undervalued, Invisible

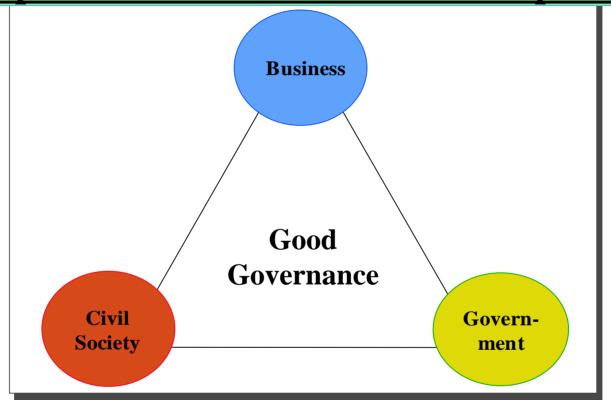
- At individual level: is built on personal networks that help us enormously in our private and professional lives.
- At community and national levels: is the invisible glue that binds society together.

Social Capital – Civil Society is Main Source

Examples of Civil Society Response: 2004 Tsunami - Sri Lanka versus 2005 Hurricane Katrina - New Orleans, USA

Event	Deaths	GNP/capita
2004 Tsunami – Sri Lanka	~35,000 (1 in every 570 people)	~ USD 1,000
2005 Hurricane Katrina - USA	~1850 (1 in every 200,000 people)	~ USD 35,000

Core concepts and elements


- 1. Making development more sustainable (MDMS)
- 2. Sustainable development triangle
- 3. Transcending boundaries
- 4. Full cycle application of integrative tools from data gathering to practical policy implementation

Transcending Boundaries for Sustainable Development

- Disciplinary
- Space
- Time
- Stakeholder
- Operational

Transcending Stakeholder Boundaries to Ensure Cooperation for Sustainable Development

Not only government, but also business and civil society have a vital and balanced role to play in strengthening local, national and global citizenship

Source: Munasinghe (1992), Rio Earth Summit

Transcending Operational Boundaries

Seamless Cycle

ACTION

Observations and Data

Concepts and Ideas

Models & Analyses

Interpretation of Results

Plans & Policies

Practical Implementation

ACTOR

Observers

Thinkers & Philosophers

Scientists & Analysts

Translators & Communicators

Decision Makers

Implementing Agents

Each stage of activity from observation to implementation should flow smoothly and not become compartmentalised

Source: Munasinghe (2002), Int. J. of Sust. Dev.

Core concepts and elements

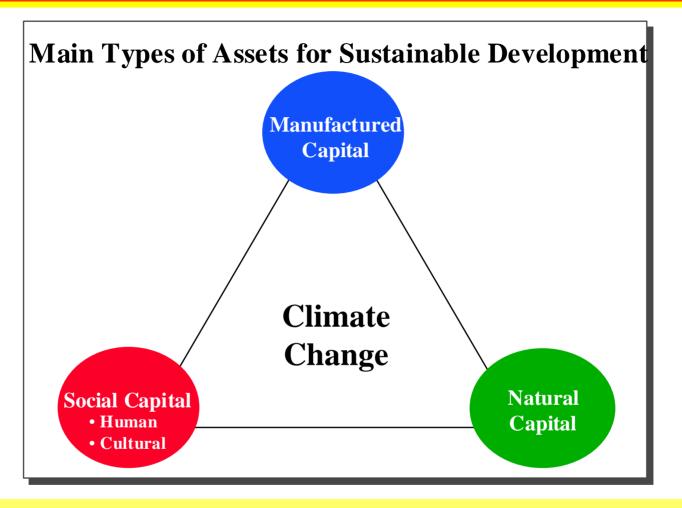
- 1. Making development more sustainable (MDMS)
- 2. Sustainable development triangle
- 3. Transcending boundaries
- 4. Full cycle application of integrative tools from data gathering to practical policy implementation

Integrative analytical tools and practical applications (linking across global, national and local levels)

Integrative Analytical Tools

- 1. Restructuring Growth to Make Development More Sustainable (MDMS)
- 2. Optimisation and Durability
- 3. SD Analysis (Macro Level)
- 4. Action Impact Matrix (AIM)
- 5. Green Accounting (SEEA-SNA)
- 6. Integrated Models (IAM, CGE, etc.)
- 7. SD Analysis (Micro Level)
- 8. Multi-Criteria Analysis (MCA), Cost-Benefit Analysis (CBA) and Economic Valuation
- 9. SD Indicators

Application Levels


A. Globaltransnational

B. National-macroeconomic

C. Subnationalsectoral

D. Localproject Linkages Across Levels

Integrating across the three dimensions of SD

Economic approach focuses on optimality - maximise growth Environmental & social approaches use durability - overall system health

Integration via

Sustainable Development Assessment (SDA)

(partial equilibrium analysis at sector/project level)

- 1. Economic/Financial Assessment (CBA)
- 2. Environmental Assessment (EA)
- 3. Social Assessment (SA)
- 4. Poverty Assessment (PA)
- 5. Technical Assessment (TA)

Choice of appropriate SD indicators is vital for SD Assessment

SD Indicators

- Social
- Environmental
- Economic
- Institutional

many indicators are available; thus choice is critical for specific task at hand

Growing Potential for Water conflicts

ISSUES

- Freshwater is becoming scarcer in the 21st century
- Tension at national and local levels is an emerging trend
- Increasing concern over potential for conflicts
- Need more cooperation and wise resource management

OPTIONS

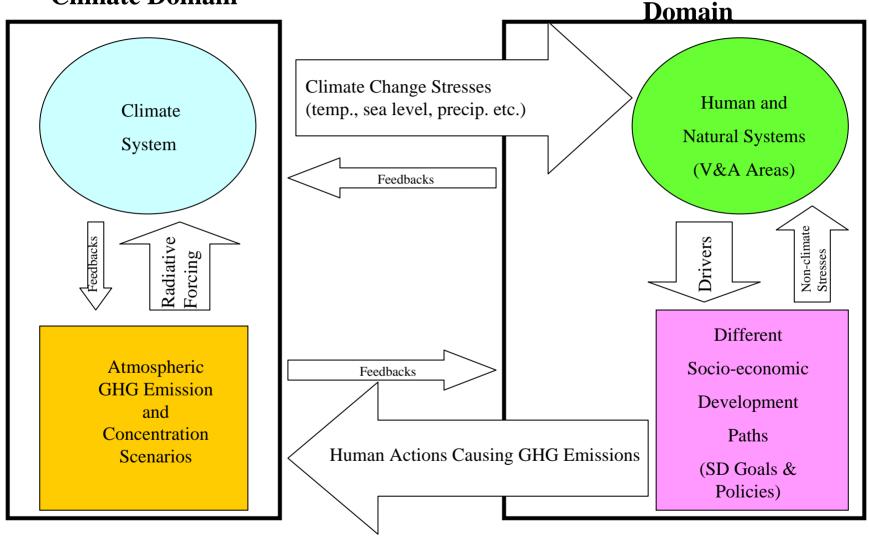
- Move from competition & conflict to cooperation & sharing
- Reduce emphasis on arbitration of individual disputes
- Establish frameworks for sustainable water resources management

SWARM Approach

Water is a valuable resource that has economic, social and ecological value Holistic integration is needed of these three dimensions within the SD triangle

Water institutions need to manage and develop water resources based on inclusive and participatory methods

Need for Better Cooperation and Partnerships

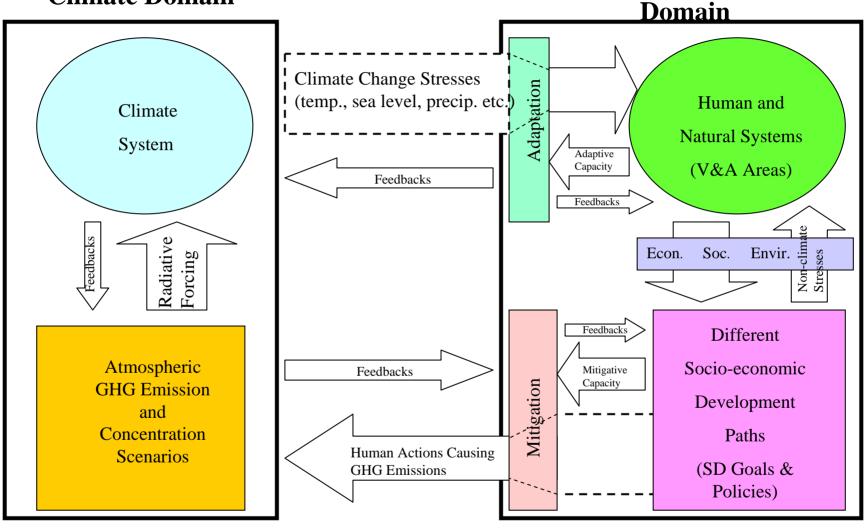

- International
- Regional
- National
- Local
- Community

Tracing the Links Between Water, Climate Change and Sustainable Development

Global Level CC-SD Links 1

Climate Domain

Sustainable Development



Global Level CC-SD Links 2

Climate Domain

Sustainable Development

MOST DESIRABLE:

CC Policies that Harmonise Both Adaptation and Mitigation (Win-Win) and also Make Development More Sustainable (MDMS)

Examples: growing forests, saving water

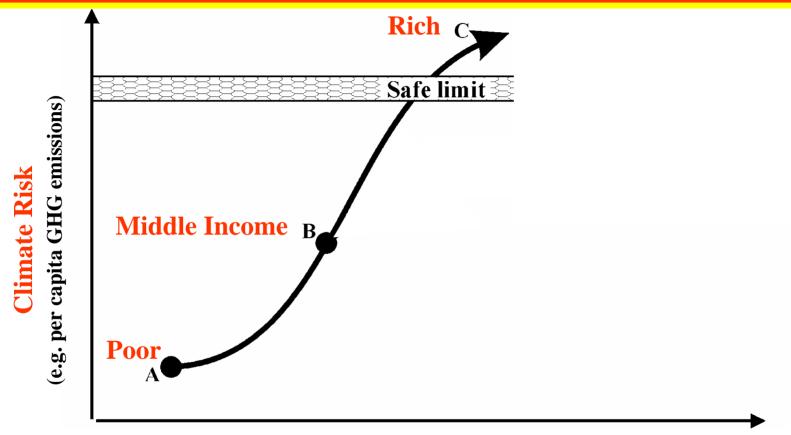
Many trade-offs also arise and need to be reconciled

There are many practical analytical tools and policy options to integrate water, SD and CC responses (from global to local levels)

There are many available case studies and best practice examples involving sustainomics applications

Practical Applications of Sustainomics Framework to Identify Sustainable Water Options

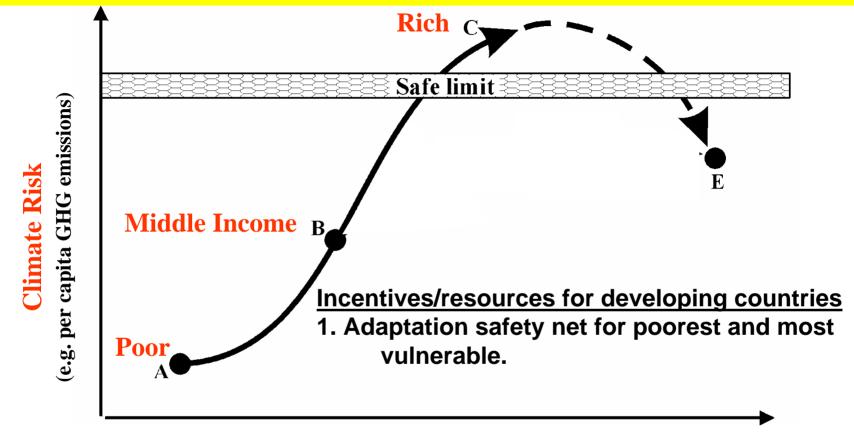
Global, National and Project Level Examples



Sustainomics Global Level Application

Making Development More Sustainable via "Tunneling": **A Potential Post-Kyoto** Framework for Jointly Managing Climate Risk & Right to Develop

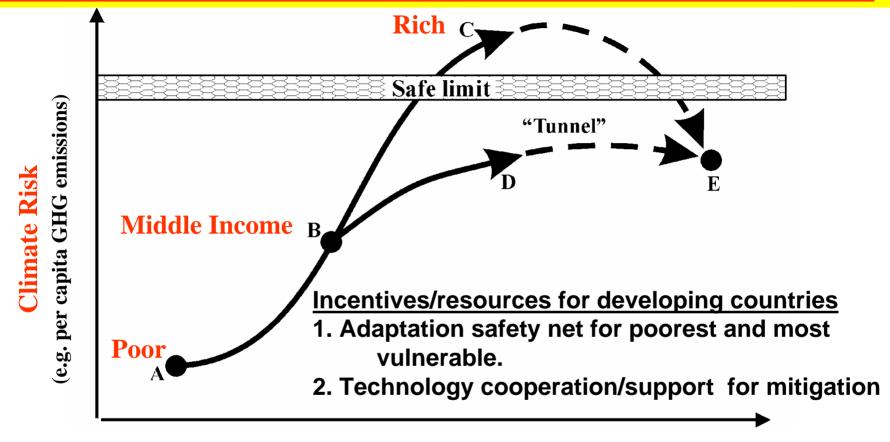
MDMS via "Tunneling": global cooperation to manage Climate Risk & Right to Develop - Step 1



Development Level (e.g. per capita income)

Source: M. Munasinghe (1995) "Making Growth More Sustainable," Ecological Economics, 15:121-4.

MDMS via "Tunneling": global cooperation to manage Climate Risk & Right to Develop - Step 2



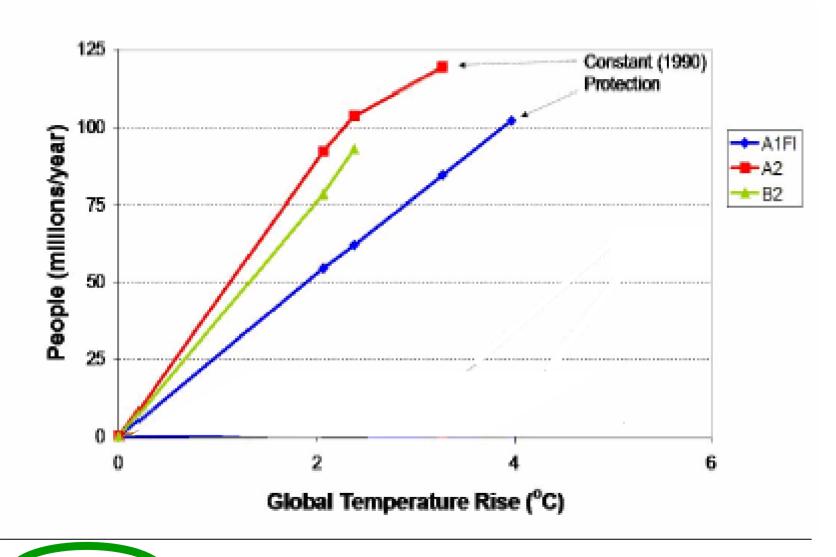
Development Level (e.g. per capita income)

Source: M. Munasinghe (1995) "Making Growth More Sustainable," Ecological Economics, 15:121-4.

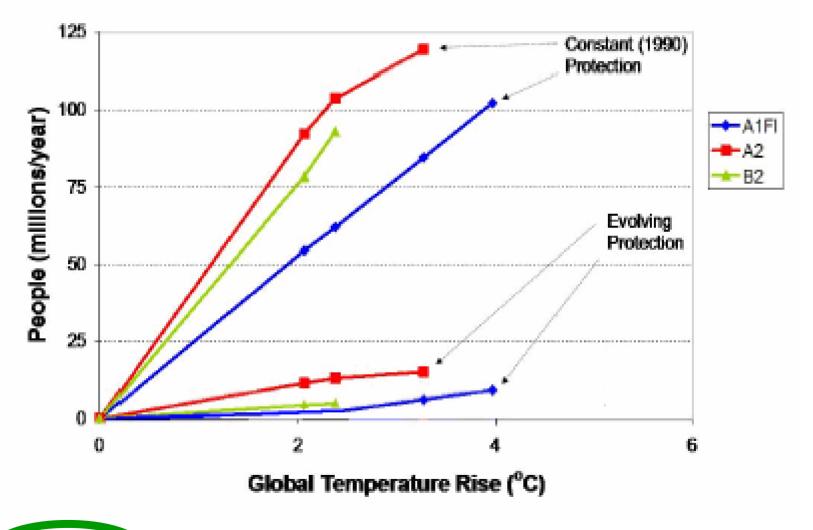
MDMS via "Tunneling": global cooperation to manage Climate Risk & Right to Develop - Step 3

Development Level (e.g. per capita income)

Source: M. Munasinghe (1995) "Making Growth More Sustainable," Ecological Economics, 15:121-4.


Adaptation and Vulnerability Reduction

Advantages of Early Action


Adaptation Example: People flooded in coastal areas 2080

Constant protection = spending maintained at 1990 levels.

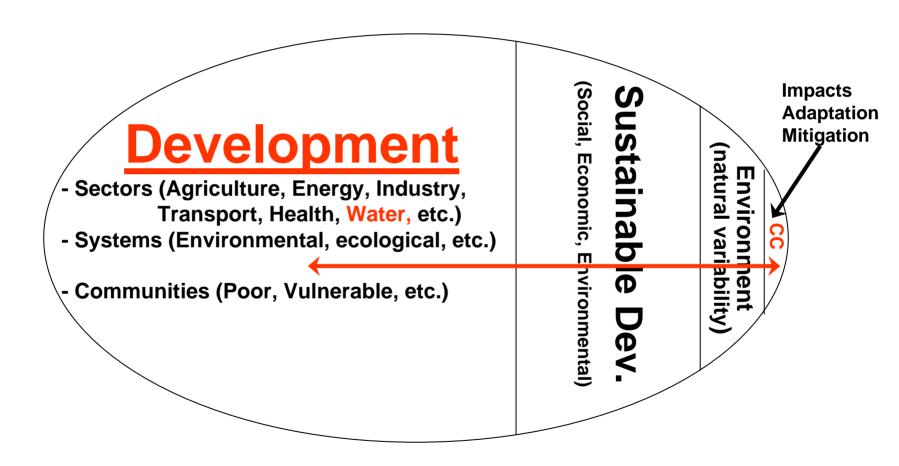
Adaptation Example: People flooded in coastal areas 2080

Constant protection = spending maintained at 1990 levels. Evolving protection = spending increases at same rate as GDP.

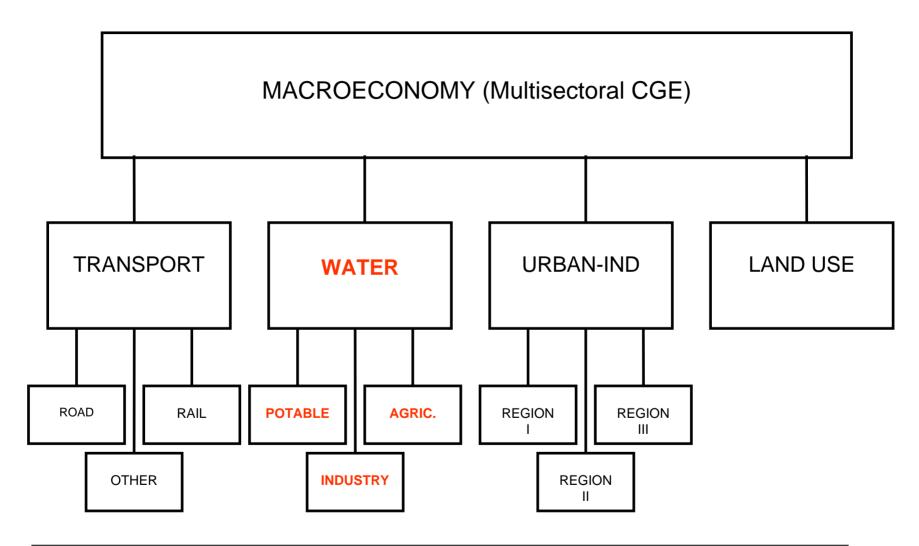
National Level Application

Integrating CC Policies into National Water Sector and SD Strategy

Developing Country Example:


Typical Response Options for a National Climate Change Strategy

- 1. Grow Fast (reduce vulnerability to CC)
- 2. Improve adaptive capacity (reduce impacts)
- 3. Mitigate (compensation needed to offset costs)
- 4. Integrate CC-SD strategy by combining 1,2 & 3



Integrating CC Policies into National SED Strategy

Make decision makers see climate change as a key element of the national sustainable development strategy

Sri Lanka Integrated SWARM Model Structure

Expanded National Income Accounts for SD

Matrix (SAM Accounting

Economic Links

Basic
Input-Output
Table

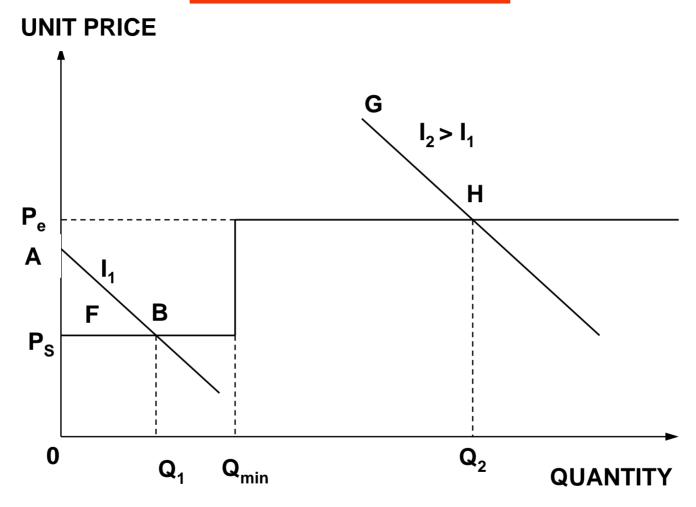
Environmental-Economic Links

Satellite
Environmental
Accounts

Economic-Social Links

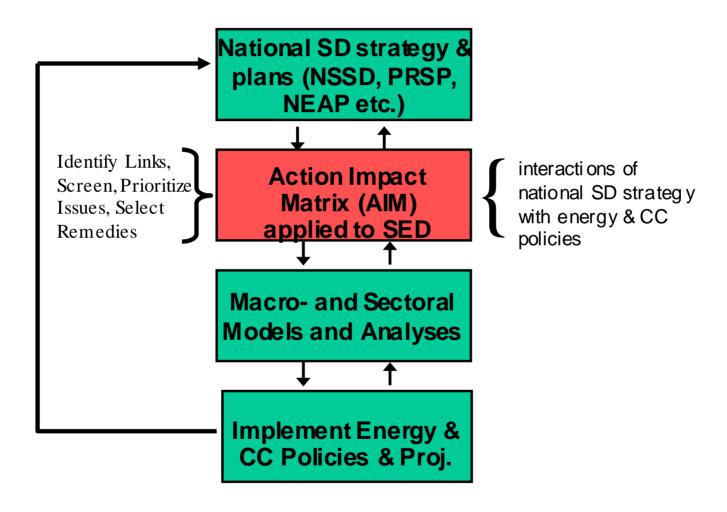
Distribution of Income

Envir.-Social Links
Distribution of
Environmental
Impacts


Water Pricing Incorporating Economic, Social and Environmental Concerns

Sustainable Water Pricing: incorporates Economic, Environmental and Social Goals

- 1. Economic efficiency: prices based on long-run marginal cost to reflect scarcity e.g., rising water supply, high opportunity costs etc.
- 2. Environmental protection: prices incorporate (internalise) externalities e.g., add pollution taxes, wastewater disposal costs etc.
- 3. Social equity: subsidised prices to meet basic water needs of the poor e.g., reduced or lifeline prices for minimum use by poor


<u>Introducing Social Concerns – Pricing Water to</u> <u>Meet Basic Needs</u>

Application of Action Impact Matrix (AIM) Methodology to Analyse SD-CC Links in Sri Lanka Brief Introduction

Analysing SD-CC Links using the Action Impact Matrix (AIM)

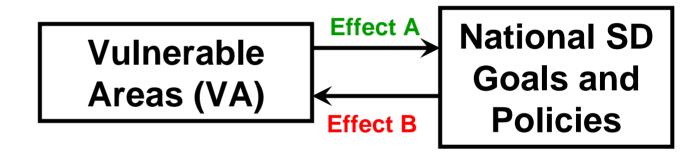
Action Impact Matrix (AIM) Methodology

The AIM methodology may be used to better understand interactions among three key elements, at the country-specific level:

- (a) national development policies and goals;
- (b) key SD issues and indicators; and
- (c) climate change adaptation (and mitigation).

First, the two-way linkages between elements (a) and (b) are explored, in the context of natural climate variability. Then, we impose the additional impacts of element (c) on the interactions between elements (a) and (b). The AIM approach analyses key economic-environmental-social interactions to identify potential barriers to making development more sustainable (MDMS) - including climate change. It also helps to determine the priority macro policies and strategies in economic, environmental and social spheres, that facilitate implementation of climate change adaptation and mitigation to overcome the effects of climate change.

Thus, the AIM helps to integrate CC within SD. It has been used since the early 1990s to link macroeconomic policies and environment.

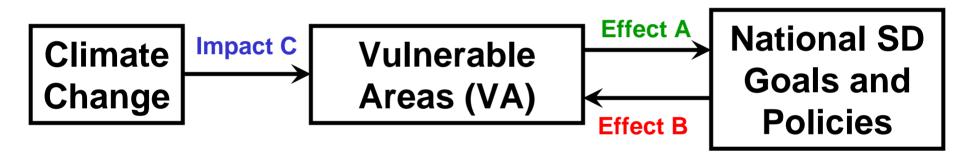

AIM Process

The AIM methodology relies on a fully participative stakeholder exercise to generate the AIM itself. Up to 50 experts are drawn from government, academia, civil society and the private sector, who represent various disciplines and sectors relevant to both sustainable development and climate change. In the initial exercise, they usually interact intensively over a period of about two days, to build a preliminary AIM. This participative process is as important as the product (i.e., the AIM), since important synergies and cooperative team-building activities emerge. The collaboration helps participants to better understand opposing viewpoints, resolves conflicts, and ultimately facilitates implementation of agreed policy remedies. On subsequent occasions, the updating or fine-tuning of the initial AIM can be done within a few hours by the same group, since they are already conversant with the methodology.

Integrating Adaptation into SD Strategy using the AIM

Action Impact Matrix (AIM) for Analyzing SD-CC Adaptation Links: 1

Step 1: DEV-AIM = Effect B


(Development Effects on VA)

Step 1: VED-AIM = Effect A

(VA Effects on Development)

Action Impact Matrix (AIM) for Analyzing SD-CC Adaptation Links: 2

Step 2: DEV-AIM = Effect B + Impact C (Development Effects on VA)

Step 2: VED-AIM = Effect A + Impact C

(VA Effects on Development)

Building the AIM – Step 1: Identify Rows and Columns

Row Headings: key national macro-economic goals and policies.

Column Headings: key vulnerable areas (VA), and associated economic, environmental and social indicators.

		Vulnerable Areas (VA)				
		Economic		Environmental	Social	
		(1) Agricultural output	(2) Industrial Activity	(3) Water Resources	(4) Health	
Dev. Goals/Policies						
(A)	Growth					
(B)	Poverty alleviation					
(C)	Food Security					
(D)	Employment					

Adaptation Effects on Development (VED-AIM) in Sri Lanka – CC Impacts and Effects of VA on Development Goals/Policies

X Y Yulnerabilities, Impacts and Adaptation (VIA)											
Notation \ \ \ \		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
 + Beneficial - Harmful 3 High 2 Moderate 1 Low 		Agric.	Hydro	Defore	Bio- div. (flora &	Wet- lands & coastl ecosy	Water resour	Poor	Human	Infra-	Indust ries & Tour-
		Output	Power	station	fauna)	stems	ces	unities	health	struct.	ism
(S0)	Status (Nat. Variability)	-1	0	-2	-1	-1	-2	-1	0	2	2
(S1)	Status (+CC Impacts =>)	-2	-1	-2	-2	-2	-3	-2	-1	-1	-1
Dev. Goals/Policies (+CC											
<u>Impac</u>	<u>Impacts)</u>										
(A)	Growth	-1	-1	-1	-1	-1	-2	-2	-1	-1	-1
(B)	Poverty alleviation	-2	0	-1	-1	-1	-2	-2	-2	-1	-1
(C)	Food Security	-3	0	-1	-1	-1	-3	-1	-1	0	0
(D)	Employment	-1	0	-1	0	-1	-2	-1	-2	-1	-2
(E)	Trade & Globalisation	-2	-1	0	0	0	-1	-1	0	-2	-1
(F)	Budget Deficit Reduction	-1	-1	0	0	0	0	0	-2	0	-1
(G)	Privatisation	0	1	1	0	0	1	0	0	-1	-1

VED-AIM Example: Priorities for Policy Analysis

The -3 values in cells C1 & C6: Agriculture, Water Resources -> Food Security

Priority area for further detailed research and modeling. For example, a specific model may be used to study the effects of climate change induced rainfall variations (as well as temperature rise and possible carbon fertilisation) on the most important types of crops (for a study using Ricardian agricultural modelling, see Seo, Mendelsohn and Munasinghe, 2005). Specific policy options could be simulated – e.g., measures to protect against floods and droughts, more efficient use of water in agriculture, use of drought resistant crops, etc.

Detailed description of impacts of climate change on food security via agriculture and water resources

Background

Global warming will lead to temperature increases and alterations in the hydrological cycle through increases in surface temperature and rates of evaporation, and in some regions, increases in precipitation. Changes in the total amount of precipitation and its frequency and intensity directly affect the magnitude and timing of run-off and the intensity of floods and droughts. Such changes will have significant impacts on agriculture and water resources.

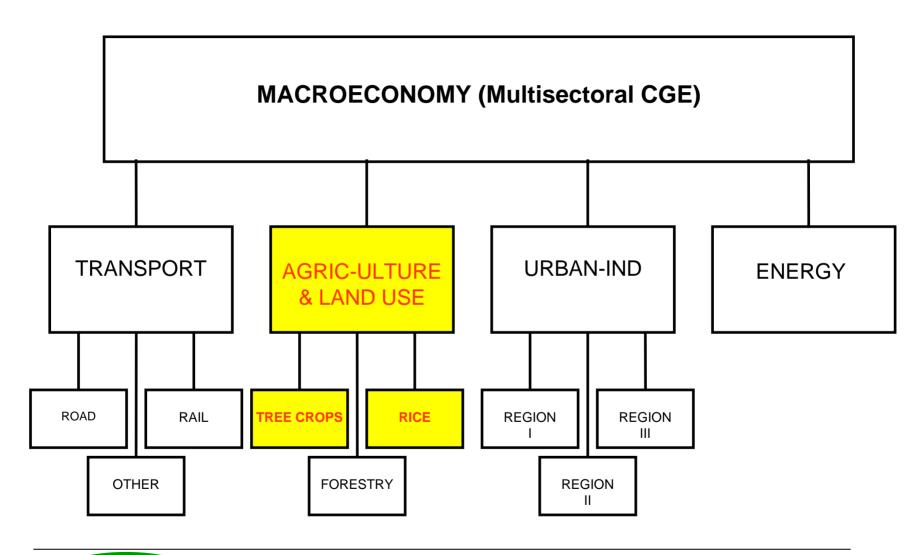
Rainfall

Dharmasena (2004), Bandara and Wickramagamage (2004)

Temperature

Zubair et al. (2004), Bandara & Wickramagamage, 2004.

Asian Brown Cloud (ABC)


Swain and Herath (2004), Herath et al, (2004), Pathirana and Herath (2004)

Integration via SD Analysis at the Macroeconomic/Sectoral Level (general equilibrium analysis)

- 1. Macroeconomic/Sectoral Modeling
- 2. Environmental and Macroeconomic Analysis
- 3. Poverty/Income Distributional Analysis

Multi-sector Computable General Equilibrium Model

AIM Detailed Follow-up Study: <u>Sector Example</u>

Analysing Water and Climate Change Impacts on Agriculture in Sri Lanka

Source: M. Munasinghe and S. Perera (2006)

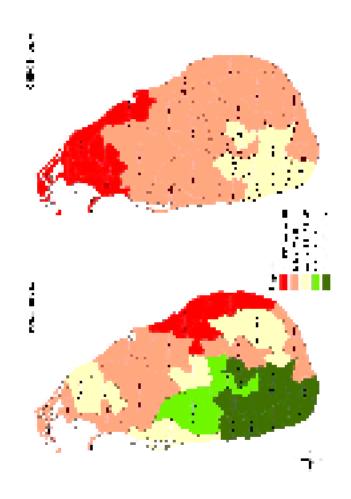
Downscaled GCM Results: Range of Climate Change Predictions for Sri Lanka in 2050

Global Scenario	Period	Rainfall	Temperature
B1	NEM	Increase by 50 mm over the	Max. temperature: increase by 0.8° C
		baseline	Min. temperature : increase by 1.0° C
B 1	SWM	Increase by 350 mm over the baseline, especially over	Max. temperature: increase by 0.8° C
		the Western slopes of the central hills	Min. temperature : increase by 0.8° C
A1F1	NEM	Increase by 70 mm over the baseline, especially over the	Max. temperature: increase by 1.1° C
		Eastern slopes of the central hills	Min. temperature : increase by 1.4° C
AIDI	SWM	Increase by 520 mm over the baseline, especially over	Max. temperature: increase by 1.1° C
A1F1		the Western slopes of the central hills	Min. temperature : increase by 1.2° C

Sri Lanka - National level impact on Agric. Revenue in 2050 – temp/rain & equity

(A1F1 scenario based projection)

Crop	Temperature Effect	Rainfall Effect	Temp. Plus Rainfall Effect
Paddy (Rice) (dry zone – poorer)	-3.5%	-7.8%	-11.4%
Plantation Crops (wet zone – richer)	+1.5%	+2.0%	+3.5%


Impact on Sri Lanka national economy in 2050* - GDP effect small BUT equity effect larger

Crop	Change of Total GDP in 2050 (%)	Change Agriculture GDP in 2050 (%)
Rice (dry zone – poorer)	-0.36	-2.46
Plantation Crops (wet zone – richer)	+0.10	+0.70
Rice + Plantation Crops	-0.26	- 1.76

*Note: Assuming the same economic structure in 2050

Sri Lanka Impacts: HAD3 and CSIRO models

Some Key Policy Implications

- 1. Moderate overall impact on agricultural output and national economy, but some effects will emerge within next two decades
- 2. Significant potential risk to food security (rice)
- 3. High poverty impact on small farmers
- 4. Equity impact (small rice farms versus large tree crop plantations)
- 5. Demographic impact (potential migration from dry to wet zone)

River Basin Management Example from Europe

Matching environmental quality and financial resources

• Germany's Ruhr basin (80 years)

• French river basin financing agencies (30 years)

 Now being adapted in other countries (Brazil, Poland, and Spain)

Key features of Ruhr-French institutional systems

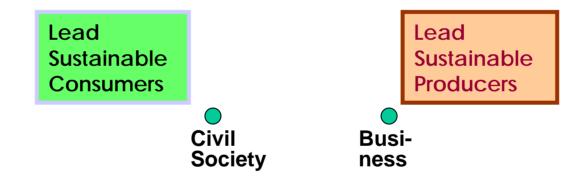
• Participation (water parliamentarians decide balance between costs & benefits)

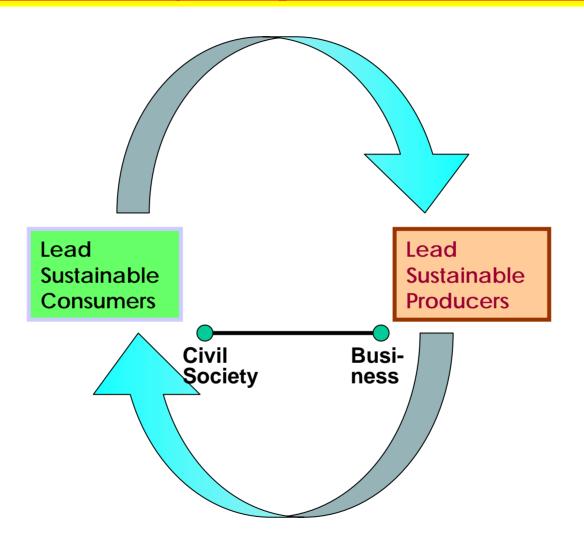
• Subsidiarity (never do at a higher level what can be done effectively at lower level)

• Technical efficiency (technical agency advised parliamentarians how best to spend resources)

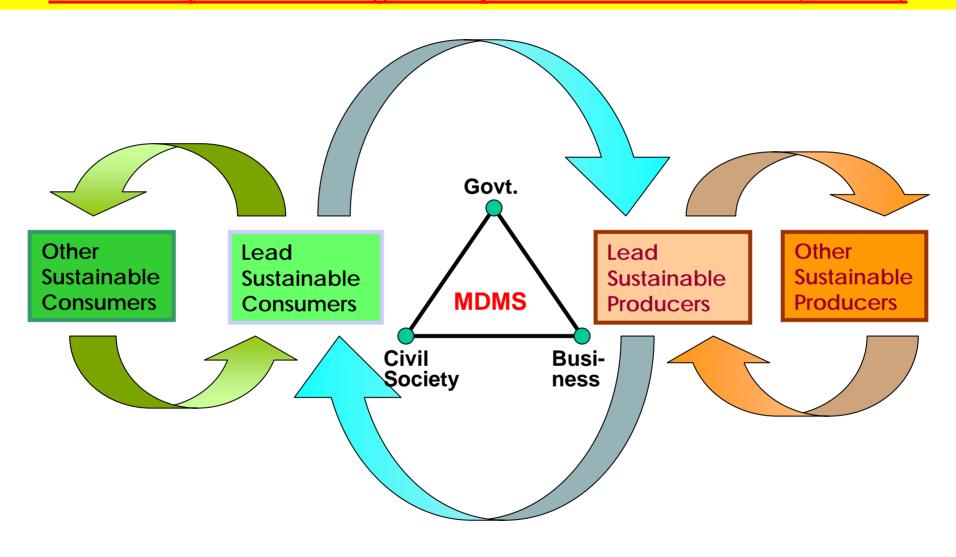
Key features of Ruhr-French typical instruments and use of revenues

• Instruments (maximum use of market based instruments, "user pays, polluter pays" principle)

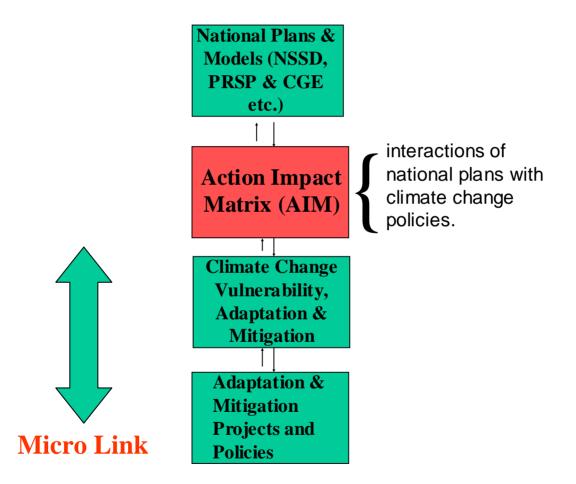

• Revenues (used to finance municipal wastewater treatment facilities among other things)


Community Level Application

Making Development More Sustainable: Linking Sustainable Water Service Producers and Consumers


Water Services: Sustainable Consumption & Production 1 Virtuous Cycle for Making Development More Sustainable (MDMS)

Water Services: Sustainable Consumption & Production 2 Virtuous Cycle for Making Development More Sustainable (MDMS)



Water Services: Sustainable Consumption & Production 3 Virtuous Cycle for Making Development More Sustainable (MDMS)

Project and Micro Level Analysis

<u>Assessing links between development plans and adaptation</u> <u>and mitigation – Micro and Project Linkage</u>

Project Level Example

Assessing economic, social and ecological indicators for small hydro in Sri Lanka

<u>Primary Source:</u> Morimoto R., and Munasinghe M. (2005) "Small hydropower projects and sustainable energy development in Sri Lanka", *Int. Journal of Global Environmental Issues*, Vol.4.

<u>Summary:</u> Munasinghe, M. (2002) "The sustainomics trans-disciplinary meta-framework for making development more sustainable: applications to energy issues", *Int. J. of Sustainable Dev.*, Vol. 4, No. 2, pp. 6-54.

Overview of study

- Hydro affects all three dimensions of sustainable development.
- Reviews linkages between potential impacts of energy production and consumption on sustainable development,.
- Multi-criteria analysis used to assess the role of small hydropower projects in sustainable water and energy development.
- 3 key variables (measured per unit of GHG avoided per year): *Economic* - electricity supply costs, *Social* - numbers of people displaced (resettled), *Environmental* - biodiversity loss
- Analysis helps policy-makers compare and rank project alternatives more easily and effectively.
- The multi-criteria analysis, which includes environmental and social variables, supplements and balances cost benefit analysis which is based on economic values alone.

Economic indicator used

Average generation costs per unit of avoided CO2 emissions per year [Ci/Qi]

where

Ci = total economic cost of project i

Qi = quantity of avoided CO2 emissions due to project i

Each unit of hydro-electricity produced is assumed to reduce a unit of thermal generation and thereby avoid associated CO2 emissions.

This measure is equivalent to using net benefits per unit of avoided GHG emissions: NBi/Qi

where

NBi = (Bi - Ci) = net benefit from project i;

Bi = total benefit from project i;

and we assume that the total benefit per unit generated is the same for all projects compared: Bi/Qi

Environmental Indicator used

Average biodiversity index value per unit of avoided CO2 emissions per year:

Gi = Ei / [Avoided CO2 emissions per year due to hydrogeneration at site i]

where Ei is the biodiversity index

$$Ei = \sum wj. Aij$$

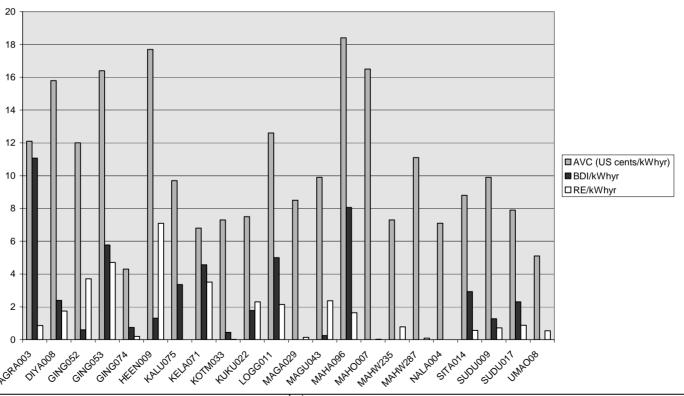
where Aij is the area (hectares) of ecosystem of type j at site i, wj is relative biodiversity value of ecosystem type j

Another useful indicator is average biodiversity index value per hectare of affected land

Fi = Ei /
$$[\sum Aij]_j$$
 = Ei / [Total land area affected at site i]

Social Indicator used

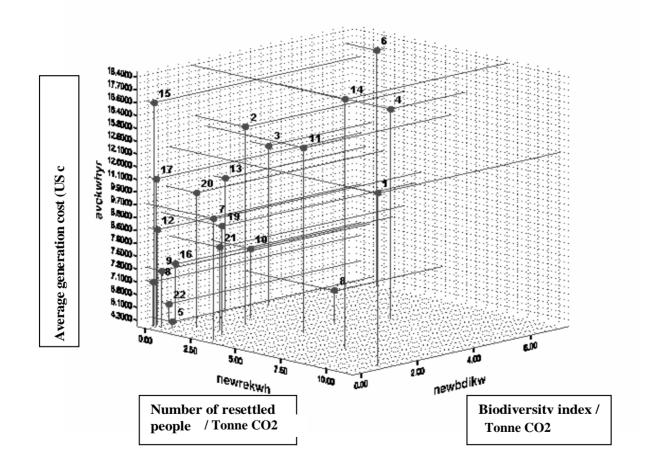
Resettlement = Number of people resettled per unit of avoided CO2 emissions per year


Minimising the number of people resettled due to dam construction is an important social objective.

Project Level:

Economic, social and ecological indicators for small hydro in Sri Lanka

Average generation costs (AVC), biodiversity index (BDI), and number of resettled people (RE) by hydroelectric project. All indices are per tonne CO2 avoided per year. Numbers of people resettled and the biodiversity index are scaled for convenience (by multipliers 10^{-5} and 10^{-9} respectively). The values at the top of the graph indicate the annual energy generation in gigawatt hours (GWh).


28 11 159 210 209 20 149 114 390 512 22 78 161 34 50 83 42 18 123 79 113 143

Three dimensional MCA of SD indicators of small hydro

Figure 5. Three dimensional MCA of sustainable development indicators for various hydropower options.

Source: Morimoto, Munasinghe and Meier [2000]

Conclusions of Study

- MCA helps policy-makers compare project alternatives more easily and effectively by narrowing down the range of choices
- Looks at all aspects of project (social, environmental and economic) unlike CBA which emphasises economic aspects.

WHAT? are the challenges water, sustainable development and climate change issues are complex and closely interlinked

HOW?

can we seize the opportunities
by making development more sustainable
and exploiting synergies using the
sustainomics framework for sustainable
water resources management (SWARM)

Optimistic final message for S. Asia and the World

Sustainable development, water & climate are interlinked problems that pose a serious challenge to us all – water is a key element.

Although the issues are complex and serious, these problems can be solved together, provided we begin now.

We know enough already to take the first steps towards making development more sustainable, that will transform the risky "business-as-usual" scenario into a safer and more secure future.

Water resources need to be combined with balanced use of key types of capital – social, economic & natural.

Governance systems must be transformed to deal with multiple crises in an integrated way.

Industry and civil society can be re-organised and re-energised, to work with government in mobilising resources, framing issues, identifying options and implementing them.

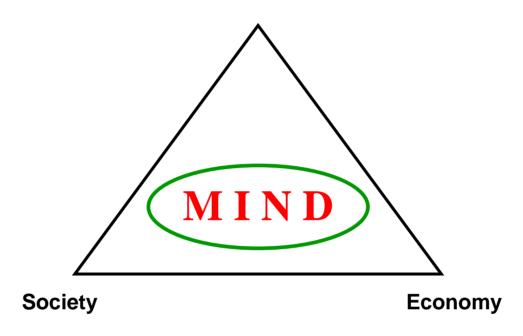
WATER IS A KEY ELEMENT OF THE SOLUTION & NOT THE PROBLEM – KEY ROLE FOR WATER EXPERTS!

<u>Ancient Pali Blessing – from Sri Lanka</u>

DEVO VASSATU KALENA SASSA SAMPATTI HETU CA PHITO BHAVATU LOKO CA RAJA BHAVATU DHAMMIKO

May the rains come in time (environment)
May the harvests be bountiful (economy)
May the people be happy and contended
May the king be righteous (society)

Even in ancient times, a favourable environment, economic prosperity, social stability, and good governance, were well known as the key factors to make development more sustainable.


Suggestions for Further Information

- 1. Munasinghe, M. (2007) Making Development More Sustainable: Sustainomics Framework and Practical Applications, MIND Press, Munasinghe Institute for Development, Colombo.
- 2. Munasinghe, M., and Swart, R. (2005) *Primer on Climate Change and Sustainable Development*, Cambridge University Press, UK. –translated into Chinese
- 3. MIND (2005) Action Impact Matrix (AIM) Application to Climate Change Users Guide, Munasinghe Institute for Development, Colombo.
- 4. Website URL: <www.mindlanka.org>

An Introduction

Environment

Munasinghe Institute for Development

"making development more sustainable - MDMS"

10/1 De Fonseka Place, Colombo 5, Sri Lanka

Phone: +9411-255-1208; Fax: +9411-255-1608

E-mail: <MIND@mindlanka.org>; Web: <www.mindlanka.org>

PROGRAMMES

Awards

Research fellowships, Scholarships, Sustainable Support Service (MS3), Book donations

Research & Training

Training workshops/expert meetings

Applied research studies and evaluations

UN "Centre of Excellence" for Asia in the Climate Change Capacity Development (C3D) network of the United Nations Institute for Training and Research (UNITAR).

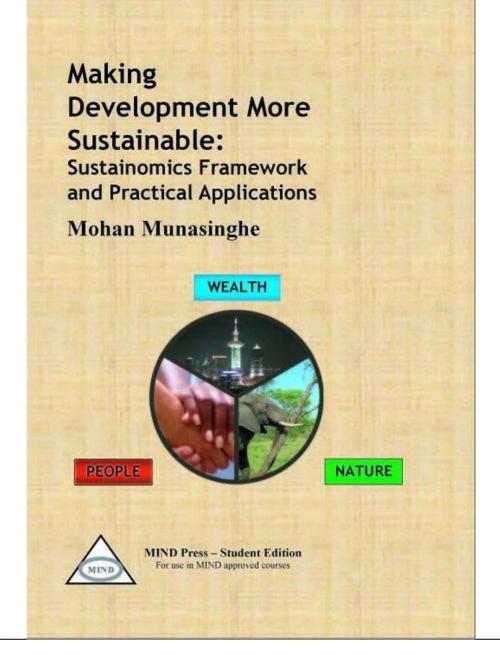
MIND CC-SD Training Course, CMA, Beijing, July-Aug, 2006 270 Senior Chinese Officials

MIND SD Course, Delhi, Feb. 2007
25 Senior Indian Civil Service Officers

MIND-ERC CC-SD Training Course, University of Cape Town, October 2007, for 30 Senior Decision Makers from Government, Business and Civil Society

The University of Manchester Sustainable Consumption Institute (SCI)

Leading research into sustainable consumption


Summary Paper (5 pages)

Finance and Development, March 2008, pp.37-41

Extensive Book 650 pages

Thank You Very Much